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ABSTRACT
Autoregressive Fractionally Integrated Moving Average (ARFIMA) has been suc-
cessfully applied in modelling and forecasting with linear economic time series with
long memory components. In order to capture additional complex nonlinear eco-
nomic relationships with many unknown patterns, another popular approach known
as the Artificial Neural Network (ANN) can be used. It has been recognised that a
combination of both ARFIMA and ANN can be used to capture both the linear and
nonlinear components of a time series. This paper proposes an alternative hybrid
model, which is distinctive in integrating both the linear and nonlinear components
of applied time series with long memory - and in considering both additive and
multiplicative models. A simulation study has been carried out to investigate the
properties of this ARFIMA-ANN hybrid modelling and forecasting. We justify the
usefulness of this proposed hybrid model in practice using empirical data sets from
various domains - financial, environmental (pollution), climate (El Niño) and energy
(electricity load) - and compare the accuracy of forecasting with existing models. We
have shown that, in general, these hybrid models will often produce more accurate
forecast values than other - individual - models. We also discuss explainability and
interpretability.

KEYWORDS
Long memory, Fractional difference, Heteroscedastic, ARFIMA, Forecasting,
neural net, ANN, Hybrid, Explainable AI, XAI, Interpretable.

1. Introduction

The concept of long-range dependency has become popular in applications in economic
time series since the work of Granger and Joyeux (1980) [28]. These authors proposed
the family of autoregressive fractionally integrated moving average (ARFIMA) mod-
els, which essentially replace the traditional integer degree of differencing in ARIMA
structure by a fractional degree of differencing in the open interval (0, 1/2). Since then,
ARFIMA modelling and analysis has been an important research topic, especially in
economics and finance. Analysis of stock index and returns reveals an apparent long
memory component in the time series - see, e.g., [6, 35, 39, 41]. These stock market
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indices have been analysed using ARFIMA theory. Franco et al. (2018) [26] used the
bootstrap approach in developing prediction (or forecast) intervals in the ARFIMA
model.

In recent years, the parameter estimation of ARFIMA models has been developed
through the state space approach by Palma and Chan (2005) [45] and Dissanayake
et al. (2016) [10]. During the past few decades, an approach supported by applied
artificial intelligence systems and, in particular, artificial neural networks (ANNs) has
been used in time series forecasting. A main reason for this is clear from the fact that
fitting a linear model for a given data set is not always satisfactory as any unknown
association of the data may typically be nonlinear. A promising approach of capturing
such unknown nonlinear relationships is identified as the use of a suitable ANN - see
for example, [20]. In their papers, Wang et al. (2013) [66], Khandelwal et al. (2015)
[33] and Fang, Dowe et al. (2021) [21] have developed and implemented ARMA-ANN
Hybrid modelling with applications for stationary (long) short-memory time series. A
different kind of hybrid model is given in [69].

When a time series is homogeneous non-stationary or contains seasonal components,
the corresponding ARIMA or seasonal ARIMA (SARIMA) has been used with ANN
by (Hermansah et al., 2019) [29] to handle unknown nonlinear relationships. As the
concept of long memory is useful in modelling many applied financial time series, this
paper extends the existing work and develops a new approach based on ARFIMA-
ANN.

The works [21, 26, 39, 41] all have financial applications. Fang, Dowe et al. (2021)
[21] uses the Bayesian information-theoretic minimum message length (MML) princi-
ple (see, e.g., [13, 49, 62–64] and also has environmental pollution applications - and
Fang, Xie et al. (2021) [22] has discussed a pollution application. MML can be thought
of in terms of Ockham’s razor - see, e.g., [4, 42]. We have financial and environmental
(pollution) applications in sec. 5.1 and sec. 5.2 respectively. Many other application
areas for this current area of work include (e.g.) climate (see, e.g., sec. 5.3), energy
(see, e.g., sec. 5.4), epidemiology (including COVID and other pandemics), etc. and a
variety of other areas (see, e.g., sec. 5.5).

There is currently something of a tension within artificial intelligence (AI) between
(on the one hand) interpretable, explainable, relatively simple models (upon which we
can often do at least some sort of sensitivity analysis) and (on the other hand, opaque
black-box) deep learning (seemingly with at most little viable option for a sensitivity
analysis). Indeed, the field of explainable AI (XAI) is currently a growing area - due
partly to the increasingly deployment of AI systems and the increasing responsibilities
delegated to them, and surely also at least some consideration of potential dangers
of AI [53] [14, secs. 1.1, 3 and 4.8] [27] (Grace et al., 2023) [7], delegating control
[43] [37], in addition to legal considerations including but not limited to responsibility
(and law and regulation). In the specific context of large language models (LLMs) and
generative AI (without commenting here on ChatGPT or any other specific cases),
the notion of understanding [17, sec. 5.1][18, secs. 1, 2.1 and 6][19, sec. 2] is similarly
relevant and important in regard to explainable AI and to at least some of the issues
from the immediately preceding sentence. One can even raise the issue of getting
machines to judge the Turing test (equivalently, administer the Turing test or imitation
game) [17, sec. 5][18, sec. 5.2][19, sec. 5][48][30] as a version of machines being able to
assess the merits - and interpretability - of other machines (including their arguments
and explanations).

Bearing in mind matters from the last paragraph re explainable AI, we build upon
our earlier work in showing the merits of having a transparent explainable statistical
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model as a form of XAI and then extending that with deep learning. More specifically,
we extend the approach of earlier work of (Fang, Dowe et al., 2021) [21] by again doing
an additive model (or a deep learning model on the residuals, or difference between the
true data and the statistical model). We also introduce anew a multiplicative model (or
a deep learning model on the ratio between the true data and the statistical model).

Our earlier (additive model) and current (additive and multiplicative models) work
shows the merits of having a transparent explainable statistical model as a form of
XAI - with the additive model entailing doing deep learning on the residuals, i.e., on
the differences between the true raw data and our model. The fact that the residuals
are typically smaller in magnitude than the original raw data suggests the promise
we have found in this approach. For the multiplicative model (which we can do with
univariate data and other cases), the ratio being modelled by deep learning will often
approximately equal the value 1. Hybridising conventional statistical modelling with
deep learning in this way not only gives an explainable underlying basis to deep
learning, but it also often improves the resultant predictions.

With the above in mind, section 2 reviews the theory of autoregressive fractionally
integrated moving average (ARFIMA) modelling together with a number of basic
results for later reference - and the end of section 2 outlines the rest of the paper.
Sec. 3 outlines neural network approaches, and sec. 4 is on hybrid methods in time
series analysis. In sec. 5 on applications (abovementioned sec. 5.1 on financial data,
sec. 5.2 on pollution data, sec. 5.3 on climate data and sec. 5.4 on energy data), we
point out the merits of the hybrid approach. In sec. 6, we summarise, discuss future
directions of (research) work, and mention the relevance of this work to explainable
artificial intelligence (or explainable AI, or XAI, or interpretable AI).

2. ARFIMA model and basic results

A stationary time series is identified as having long-range dependency or long memory
or is highly persistent if

• the autocorrelation function (acf) ρk decays very slowly at a hyperbolic rate
such that

ρk ∼ k2d−1, where 0 < d < 0.5,

• the spectrum or spectral density function (sdf) f(λ) is unbounded near the
origin and follows the power law when 0 < d < 0.5,

f(λ) ∼ λ−2d as λ → 0+.

From the above, it is interesting to note that when d < 0, the sdf f(λ) → 0 as λ → 0.
In this case, the time series is said to have intermediate memory. It is known that, the
time series described above is invertible when d > −0.5. These two properties (above)
of a stationary long memory time series are clearly different from short memory time
series, which are as described below:

• the acf ρk decays exponentially such that ρk ∼ |δ|k, where |δ| < 1,
• the sdf is bounded and is finite at the origin.

There is significant evidence to show that long memory processes exist in many prac-
tical time series analysis problems, especially in economics and finance. It has been
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shown that a long memory time series {Xt} superimposed with a short memory com-
ponent can be modelled by a suitable member from a family with a fractional degree
of differencing d ∈ (0, 0.5), known as an autoregressive fractionally integrated moving
average model of order (p, d, q) or ARFIMA(p, d, q) given by

ϕ(B)(1−B)dXt = θ(B)ϵt, (1)

where B is the backshift operator such that BjXt = Xt−j ; and ϕ(B) = 1−ϕ1B− . . .−
ϕpB

p and θ(B) = 1+ θ1B + . . .+ θqB
q are polynomials of orders p and q respectively

such that the roots of ϕ(ℓ) = 0 and θ(ℓ) = 0 are outside the unit circle (which are
known as stationary and invertible conditions respectively); 0 < d < 0.5 and ϵt is a
sequence of uncorrelated random variables with mean 0 and a constant variance σ2,
which are not necessarily independent. This sequence ϵt (of uncorrelated random vari-
ables with mean 0 and a constant variance, σ2, which are not necessarily independent)
is also known as a white noise (WN) sequence and is written as ϵt ∼ WN(0, σ2). This
family in (1) is well suited for modelling time series with long memory and has become
a popular tool in econometrics. Under the stationarity (or AR regularity) conditions,
it is easy to show that the Wold representation of (1) is

Xt = ψ(B)ϵt =
∞∑
j=0

ψjϵt−j , (2)

where ψ(B) = [ϕ(B)]−1(1−B)−d[θ(B)] =
∑∞

j=0 ψjB
j .

It is easy to show that ψj = aj + aj−1b1 + . . . + a1bj−1 + bj for all j ≥ 1 with

[ϕ(B)]−1[θ(B)] =
∑∞

j=0 ajB
j and (1 − B)−d =

∑∞
j=0 bjB

j , bj = Γ(d+j)
Γ(j+1)Γ(d) . As these

results are distinguishable from a stationary ARMA family (i.e., exponential decay of
the autocorrelation function (acf) and a bounded spectrum at the origin), we illustrate
them below.

A family of stationary and invertible ARMA(p,q) for short memory time series can
be obtained from (1) when d = 0. When d = 1, 2, . . ., this becomes an ARIMA(p,d,q)
and is used to model non-stationary time series. Carefully investigating the above
acf and sdf, a clear distinction between the short memory ARMA and long memory
ARFIMA processes can be used in applications.

For illustration, we take the following two models:

• ARMA(1,1): (1− 0.6B)Xt = (1 + 0.7B)ϵt, and
• ARFIMA(1,0.4,1): (1− 0.6B)(1−B)0.4Xt = (1 + 0.7B)ϵt models,

where, in each case, ϵt is taken from the standard Normal distribution, N(0, 1). The
acf plot of ARMA(1,1) shows that the values drop-out very quickly and the spectrum
is bounded at the origin unlike in the ARFIMA(1,0.4,1) case (see figure 1).

We have just discussed ARFIMA modelling. As per the end of sec. 1, we now
discuss models from neural networks approaches (in sec. 3), then hybrid ARFIMA-
LSTM (or hybrid ARFIMA-ANN) models (with some simulated data) in sec. 4, and
then comparisons on real-world data-sets in sec. 5. We return at the end of the paper
in sec. 6 to discuss, among other things, the possibility of trying to get a further
interpretable approximation to the (hybrid) deep learning approach.
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Figure 1. Plot of ACF and SDF of ARIMA and ARFIMA models

3. Neural network approaches

The concept underpinning neural networks and their applications in various applied
problems have been around for more than seven decades. However, it has recently
been extensively applied in different areas of studies such as medical science, computer
science and data science as computing power has been increasing dramatically over
recent decades. Neural network research is a renowned branch of machine learning, and
the approach is based on a resemblance to the activities of biological neural networks
in the body, especially in the brain. The next section, sec. 3.1, is, therefore, devoted
to give a brief review of neural networks, known as Artificial Neural Network (ANNs),
in order to combine them with long memory time series analysis.

3.1. ANNs and Time Series Analysis

As we have seen, the ARFIMA family is used to model a process using a suitable
linear approximation following the properties of the acf, pacf (partial auto-correlation
function) and the sdf. However, this linear approximation may not be satisfactory in
certain applications. Therefore a nonlinear technique has been developed for modelling
over a very wide range of time series and related applications. This is a more flexible
and a general approach in terms of architecture. The architecture of this method
bears a high similarity to the neurons in the brain, hence the name “artificial neural
network” or “ANN”. As the name suggests, ANNs use artificial neurons connected
in layers to simulate the human synapse or neuronal junction. Therefore, the basic
elements of an ANN are interconnected in adjacent layers. A typical simple ANN
consists of three types of layers consisting of an input layer, hidden layers each with
a nonlinear function, and an output layer. Such a single hidden layer feedforward
network is widely used in many applications related to time series modelling and
forecasting. This network has simple processing units which are connected by acyclic
links as shown in the diagram in figure 2, which shows a feed-forward ANN diagram
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(where figure 2 only shows one hidden layer, but an outline of more detailed LSTM
modelling is given in [21, figs. 1 and 2]). Note that there is a connection from each
node in the input layer with the nodes in the hidden layer and from each hidden
layer node with the nodes of the output layer (and, if there is more than one hidden
layer, there are connections between each layer and the next). All connections carry
some (possibly unknown, to be inferred or estimated) weights which play a role in
determining the output.

Input
layer

Hidden
layer

Output
layer

I1

I2

I3

I4

I5

Output

Figure 2. A feed-forward ANN diagram

Suppose that {Xt} is a stationary time series. In ANN modelling, a nonlinear func-
tional mapping from the p past observations Xt−1, . . . , Xt−p to the current value of
Xt is to be obtained. That is, select the optimal p such that the Xt is expressed as
the best nonlinear combination satisfying

Xt = c+

q∑
j=1

βjg(fj(Xt−1, . . . , Xt−p)) + ϵt, (3)

with a simple mathematical functional relationship for fj(.) such that

fj(.) = α0j +

p∑
i=1

αijXt−i, (4)

where g(.) is a suitably chosen nonlinear function for all j which is determined by the
network, c is a constant and ϵt ∼ WN(0, σ2) (where WN is defined as in sec. 2).

The full model is obtained by combining the equations 3 and (4) with 1 + 2q + pq
parameters c, βj (j = 1, 2, · · · , q) and αij (i = 0, 1, 2, · · · , p; j = 1, 2, · · · , q). The
transfer function g(.) of the hidden layer is generally taken as a sigmoid function
and that of the output layer is a linear function. The sigmoid function (a.k.a. logistic
function) is mostly picked up as the activation function in ANN, because its derivative
is easy to evaluate and its functional form is given by

g(θ) =
1

1 + exp(−θ)
(5)
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Let h(.) be the nonlinear functional form of (3) together with (4) and (5) and, for
simplicity, write this as

Xt = h(Xt−1, . . . , Xt−p, δ) + ϵt, (6)

where δ is the vector of all parameters in the model. (An alternative way of doing this
ANN modelling would be as in [36]. We note that (Allen et al., 2023) [3] argued how
Generative Adversarial Neural Nets (GANs) can be implemented to improve modelling
and forecasting of time series. We also mention the survey of recurrent neural network
- or RNN - methods for time series forecasting in [31].)

The model coefficients in the final ANN are the weights of each link. It is clear
that both these two popular approaches of ARFIMA and ANN are rich classes from
different models. As usual a large sample of data is required in order to build satisfac-
tory models - and, in ARFIMA, the principle of parsimony is often used in choosing
the best possible model for forecasting. Let the forecast from equation (6) be X̂t and

the corresponding forecast error ϵt = Xt − X̂t. The next section considers a hybrid
methodology by combining ARFIMA and ANN in time series forecasting. We will dis-
cuss the degree to which such a combination can be thought of as - or might contribute
to - a form of explainable AI (or XAI).

4. Hybrid methods in long memory time series analysis: a simulation
study

In long memory time series analysis, one finds the best approximate member of the
ARFIMA family to a given set of data. However, the true structure of the data is
unknown and it may be superimposed with an unknown complex nonlinearity. Ig-
noring such complexity and using a linear approximation through a member of the
ARFIMA family runs the risk of producing relatively inaccurate forecast values. As
described in sec. 3, the use of ANN in time series analysis will typically improve the
forecasting accuracy when it contains undetectable nonlinear or complex components.
Therefore, one can develop a suitable hybrid methodology in order to improve the
forecast accuracy by combining both of these approaches of ARFIMA (linear) and
ANN (nonlinear).

Suppose that an observed long memory time series Yt consists of both the linear
and nonlinear components denoted by Lt and Nt respectively at time t. There are two
main potential cases in practice, as given below:

• Additive components: In this case the time series is Yt = Lt +Nt.
• Multiplicative components: This is given by Yt = Lt ×Nt.

The linear component Lt can be modelled by equation (1) and letting L̂t be the
corresponding forecast value at t. In this study, we include ARFIMA with additive
components to develop the ARFIMA-ANN approach. For the ARFIMA simulation, we
consider ARFIMA(1, d, 1) and use the arfima.sim function from the arfima package
in R to simulate the time series data.

Figure 3 shows an example of simulated data - more specifically, a time series plot
of a set of 3000 data simulated through the model ARFIMA(1,0.4,1) given by
(1 − 0.6B)(1 − B)0.4Xt = (1 + 0.7B)ϵt. We provide figure 3 as a visualisation aid,
although it is not directly relevant to the small set of simulation experiments described
below.
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Figure 3. Simulated data example

For the simulation experiments here in sec. 4 leading to tables 1, 2, 3 and 4, we used
uniform random numbers in the open interval range (−1, 1) to generate two values of
ϕ and also used uniform random numbers in the range (0.0001, 0.4999) to generate
five values of d. On the other hand, we consider the ANN model with one hidden
layer with three neurons and the sigmoid function in both the hidden layer and in
the output layers. For the simulation study of ANN series, we consider a mean of 2
different values, i.e., 1 and 2 and a standard deviation of 5 different values, namely
1, 2, 3, 4, 5 in the Gaussian function to generate 2 × 5 = 10 different sets of weights
in the ANN model - and the final simulated time series data generated is, in turn,
the summation and the multiplication respectively of ANN and ARFIMA simulated
parts. In each simulation, we simulated a sample of 1,000 time-series data with length
3,000.

We then (or further) estimate the ARFIMA(1, d, 1) and the hybrid additive and
multiplicative ARFIMA(1, d, 1)-ANN models respectively from the relevant generated
data. The estimation parts have been done using the numpy library in Python. Tables
1, 2, 3 and 4 show the results of the average of mean-squared-error (MSE) on the
relevant generated data in 1,000 samples as a comparison between ARFIMA and
ARFIMA-ANN hybrid models, including the comparison of the Akaike Information
Criterion (AIC) and Schwarz’s BIC. AIC is given by [1]

argminθ⃗ L+ k (1)

where θ⃗ is the set of parameters to be estimated, k is the number of parameters in θ⃗,
L is the negative log-likelihood, and N is the amount of data; and Schwarz’s Bayesian
Information Criterion (BIC) is given by [25, 50]

argminθ⃗ L+ (k/2) log(N) (2)

We use I1 to I10 to indicate the ten (2× 5 = 10) rows of different simulation data sets
in tables 1, 2, 3 and 4. Real-world data-sets are considered in sec. 5.

4.1. Possible extensions to the additive and multiplicative models

This section discusses a possible extension which is not carried out in the paper. It
can safely be skipped without loss of continuity.

By way of notation, ln = loge, and exp() will sometimes be used to denote e() or e
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Table 1. MSE for ten simulation data sets - 1% out sample forecasting
Average of MSE (& Standard deviation)

ARFIMA ARFIMA-ANN-Additive ARFIMA-ANN-Multiplicative
AIC BIC AIC BIC AIC BIC

I1 0.2461
(0.038)

0.42
(0.0751)

0.2681
(0.0452)

0.2667
(0.0159)

0.117
(0.0927)

0.0974
(3.388)

I2 0.258
(0.0357)

0.3928
(0.0594)

0.3077
(0.0456)

0.3128
(0.0104)

0.0976
(0.072)

0.0866
(3.3721)

I3 0.2621
(0.0412)

0.4124
(0.0786)

0.3304
(0.0456)

0.3367
(0.0338)

0.1253
(0.0343)

0.1431
(3.4174)

I4 0.2379
(0.0364)

0.4144
(0.081)

0.3319
(0.0446)

0.3276
(0.0195)

0.1153
(0.065)

0.0879
(3.3959)

I5 0.3319
(0.0539)

0.3168
(0.0803)

0.3753
(0.0638)

0.3783
(0.0274)

0.1362
(0.1113)

0.1742
(3.4229)

I6 0.2228
(0.0443)

0.4201
(0.0461)

0.2846
(0.0538)

0.2854
(0.015)

0.0795
(0.0364)

0.1326
(3.3962)

I7 0.2338
(0.0413)

0.2867
(0.0853)

0.2921
(0.0459)

0.2872
(0.0392)

0.0971
(0.0719)

0.1475
(3.4122)

I8 0.3782
(0.1246)

0.7309
(0.1645)

0.4148
(0.1302)

0.4118
(0.1119)

0.1333
(0.1412)

0.1446
(3.4362)

I9 0.2405
(0.0492)

0.1937
(0.0793)

0.2638
(0.0521)

0.2692
(0.0368)

0.1163
(0.0378)

0.0717
(3.4078)

I10 0.1429
(0.0148)

0.2518
(0.0164)

0.1971
(0.0156)

0.2035
(0.0147)

0.0682
(0.0224)

0.1246
(3.408)

Table 2. MSE for ten simulation data sets - 5% out sample forecasting
Average of MSE (& Standard deviation)

ARFIMA ARFIMA-ANN-Additive ARFIMA-ANN-Multiplicative
AIC BIC AIC BIC AIC BIC

I1 0.9754
(0.1784)

1.1493
(0.2155)

0.9974
(0.1857)

0.996
(0.1563)

0.305
(0.1629)

0.2853
(3.4583)

I2 1.2474
(0.175)

1.3821
(0.1987)

1.2971
(0.1849)

1.3021
(0.1497)

0.3525
(0.1417)

0.3416
(3.4417)

I3 1.4431
(0.1964)

1.5934
(0.2337)

1.5114
(0.2007)

1.5177
(0.1889)

0.4296
(0.1118)

0.4475
(3.4949)

I4 0.952
(0.1997)

1.1285
(0.2443)

1.0461
(0.2079)

1.0417
(0.1828)

0.2993
(0.1466)

0.2719
(3.4775)

I5 1.3825
(0.2403)

1.3674
(0.2667)

1.4259
(0.2502)

1.4289
(0.2138)

0.407
(0.2045)

0.445
(3.5161)

I6 0.9129
(0.2085)

1.1102
(0.2102)

0.9747
(0.2179)

0.9756
(0.1792)

0.2574
(0.1185)

0.3105
(3.4783)

I7 1.0295
(0.1589)

1.0824
(0.2029)

1.0878
(0.1636)

1.0829
(0.1569)

0.3022
(0.1308)

0.3525
(3.471)

I8 1.848
(0.4869)

2.2008
(0.5268)

1.8847
(0.4926)

1.8817
(0.4742)

0.5122
(0.3224)

0.5234
(3.6174)

I9 1.0886
(0.2543)

1.0417
(0.2844)

1.1119
(0.2572)

1.1172
(0.2419)

0.3349
(0.1404)

0.2903
(3.5104)

I10 0.5516
(0.0823)

0.6605
(0.0839)

0.6058
(0.0831)

0.6123
(0.0822)

0.1735
(0.0562)

0.2299
(3.4418)

Table 3. MSE for ten simulation data sets - 10% out sample forecasting
Average of MSE (& Standard deviation)

ARFIMA ARFIMA-ANN-Additive ARFIMA-ANN-Multiplicative
AIC BIC AIC BIC AIC BIC

I1 1.9017
(0.2786)

1.9327
(0.306)

1.9579
(0.2808)

1.963
(0.2777)

0.5184
(0.2045)

0.5826
(3.5565)

I2 1.8797
(0.2591)

2.0072
(0.2792)

1.9113
(0.262)

1.9111
(0.2467)

0.5178
(0.1321)

0.5544
(3.5416)

I3 1.8502
(0.3016)

1.9819
(0.3285)

1.9427
(0.3079)

1.9498
(0.2855)

0.5206
(0.217)

0.5279
(3.5296)

I4 1.8328
(0.2576)

2.2569
(0.2738)

1.8525
(0.2662)

1.8567
(0.2394)

0.4884
(0.2071)

0.5139
(3.5406)

I5 2.5234
(0.4012)

2.4781
(0.4022)

2.6187
(0.4044)

2.6214
(0.3898)

0.6771
(0.2471)

0.702
(3.5752)

I6 1.7028
(0.3251)

1.6877
(0.3516)

1.7463
(0.3351)

1.7493
(0.2986)

0.4896
(0.2469)

0.5275
(3.5585)

I7 1.7475
(0.3219)

1.833
(0.3494)

1.7997
(0.33)

1.7997
(0.3298)

0.4864
(0.2436)

0.4738
(3.5068)

I8 2.7473
(0.9676)

3.0957
(0.9929)

2.8001
(0.9766)

2.7981
(0.9416)

0.7425
(0.5311)

0.7217
(3.8309)

I9 1.7839
(0.3521)

1.9573
(0.3788)

1.7921
(0.3558)

1.7963
(0.3561)

0.4992
(0.2444)

0.5137
(3.5519)

I10 1.1139
(0.1042)

1.1224
(0.1283)

1.1611
(0.1047)

1.1623
(0.0941)

0.3261
(0.1179)

0.3041
(3.444)
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Table 4. MSE for ten simulation data sets - 20% out sample forecasting
Average of MSE (& Standard deviation)

ARFIMA ARFIMA-ANN-Additive ARFIMA-ANN-Multiplicative
AIC BIC AIC BIC AIC BIC

I1 2.4296
(0.248)

2.6035
(0.2851)

2.4516
(0.2553)

2.4502
(0.2259)

0.6798
(0.1977)

0.6601
(3.4931)

I2 1.5693
(0.2095)

1.704
(0.2332)

1.619
(0.2194)

1.624
(0.1842)

0.4355
(0.1589)

0.4246
(3.459)

I3 1.129
(0.2605)

1.2793
(0.2978)

1.1973
(0.2648)

1.2036
(0.253)

0.3487
(0.1439)

0.3665
(3.527)

I4 2.2966
(0.1591)

2.4731
(0.2037)

2.3906
(0.1673)

2.3862
(0.1421)

0.6459
(0.1263)

0.6185
(3.4572)

I5 2.9102
(0.4001)

2.8951
(0.4265)

2.9536
(0.41)

2.9567
(0.3736)

0.8008
(0.2844)

0.8387
(3.596)

I6 2.032
(0.2886)

2.2293
(0.2903)

2.0937
(0.298)

2.0946
(0.2593)

0.5458
(0.1586)

0.5989
(3.5184)

I7 1.7921
(0.4358)

1.8451
(0.4798)

1.8505
(0.4404)

1.8456
(0.4337)

0.4988
(0.2692)

0.5491
(3.6094)

I8 2.238
(1.2726)

2.5907
(1.3124)

2.2746
(1.2782)

2.2716
(1.2598)

0.6126
(0.7152)

0.6239
(4.0102)

I9 1.7247
(0.2509)

1.6779
(0.2811)

1.748
(0.2539)

1.7534
(0.2386)

0.4988
(0.1387)

0.4543
(3.5087)

I10 1.5008
(0.0619)

1.6097
(0.0636)

1.555
(0.0627)

1.5614
(0.0618)

0.4182
(0.046)

0.4746
(3.4316)

to the power of.
Noting that the logarithm of a product is the sum of the logarithms, we can gen-

eralise and continue the notion of additive model and multiplicative model by noting
the following and proceeding iteratively:

(A+ a0)− (B + b0) = (A−B) when a0 = b0 = 0

(which corresponds to the additive model),

e(ln(A+a0)+a1)−(ln(B+b0)+b1) = eln(A)−ln(B) = A/B when a1 = b1 = a0 = b0 = 0

(which corresponds to the multiplicative model),

exp(exp((ln(ln(A+ a0) + a1)) + a2 − (ln(ln(B + b0) + b1)) + b2))

= exp(exp(ln(ln(A))− ln(ln(B)))) (when a2 = b2 = a1 = b1 = a0 = b0 = 0)

= exp(ln(A)/ln(B)) = A1/ln(B),

exp(exp(exp(ln(ln(ln(A+ a0) + a1)) + a2) + a3

− ln((ln(ln(B + b0) + b1)) + b2) + b3)))

= exp(exp(exp(ln(ln(ln(A)))− ln(ln(ln(B)))))) (when ai = bi = 0, 0 ≤ i ≤ 3)

= exp(exp((lnlnA)/(lnlnB)))

= exp((lnA)1/(lnln(B))),

etc., with the definition of this class of models being able to be continued iteratively.
And, here, A can be thought of as the long memory time series Yt and B can be
thought of as the linear model Lt, both mentioned at the start of sec. 4. Recalling Nt

from the start of sec. 4, we then have that Nt = (A−B) = (Yt − Lt) for the additive
model, and Nt = (A/B) = (Yt/Lt) for the multiplicative model, and so on, etc.

The purpose of the terms a0, b0, a1, b1, a2, b2, a3, b3, ..., etc. (if they are used at all)
is primarily to ensure that we do not take the logarithm of a non-positive number -

10
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but (if the relevant term is not 0) each such term also has the potential to be used to
assist in fitting data.

5. Some applications

In discussing simulations in sec. 4 and the applications in the current section (sec. 5),
we sample from LNPPP space [11, sec. 0.2.7][21, sec. 6.1] to do our experiments. We
argue elsewhere [11, footnotes 75 and 76][12][13, sec. 3][14, sec. 4.1][21, sec. 6] about
various uniqueness and invariance properties of log-loss (or logarithm loss). Squared
error is a popular method which is also a variant of log-loss (under the assumption of
Gaussian or Normal errors).

Further to the simulations in sec. 4, we applied different approaches to analysing
some real-world data-sets. In [21, secs. 6.1, 6.2 and 6.3], we respectively considered
simulation data, financial data and environmental pollution data. We follow now in
similar vein, with additional application areas. Our hybrid methods throughout ap-
plications in the sec. 5 (the current section) below will use the additive model from
sec. 4 (as this seemed to perform better than the multiplicative model).

More specifically, we consider simulation data (with both additive and multiplica-
tive hybrid models) in sec. 4. We then (with the only hybrid model being the additive
model from sec. 4) consider applications to financial data (in sec. 5.1), environmen-
tal pollution data (PM10 in sec. 5.2), climate data (El Niño Southern Oscillation, or
ENSO, data in sec. 5.3), and energy data (electricity load data in sec. 5.4).

We present results in the tables to follow, including the coefficient of determination,
R2. Throughout, all of the rolling forecasts were just 1 step forecast at each time point
- so (e.g.) the R2 score for T = 150 is how accurate the 1 step forecasts (rolling) were
for the testing data of 150 time intervals. Also throughout, for the average MSE for
non-rolling forecast for a forecast window of T , it was just a single forecast of T steps.

In sec. 5.5, we mention some other possible application areas.

5.1. Financial data

As per [21, sec. 6.2], “The stock prices were selected from the components of the
Dow Jones Industrial Average, including Apple (APPL), Boeing (BA), Cisco System
(CSCO), Goldman Sachs (GS), IBM, Intel (INTC), Johnson & Johnson (JNJ), JP-
Morgan Chase (JPM), Coca-Cola (KO), and 3 M (MMM). The data selected start
at 23 September 2016 and finish at 22 September 2021, with a total of 1258 trading
days.”. The values of R2 for rolling forecast window of T = 150 are given in Table 5.

Table 6 shows the average mean squared error (MSE) for non-rolling forecasts on
different sizes of financial data forecast windows.

Performances on the 10 individual data-sets (Apple (APPL), Boeing (BA), Cisco
System (CSCO), Goldman Sachs (GS), IBM, Intel (INTC), Johnson & Johnson (JNJ),
JPMorgan Chase (JPM), Coca-Cola (KO), and 3 M (MMM)) vary, but - on average -
it appears that the LSTM is the worst method considered but the Hybrid ARFIMA-
LSTM is perhaps best, with BIC possibly slightly better than AIC.

11
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Table 5. R2 Score for Rolling Forecast Window of T = 150 on Financial Data

Stock LSTM AIC BIC AIC BIC
ARFIMA-LSTM ARFIMA-LSTM ARFIMA ARFIMA

Hybrid Hybrid

AAPL 0.5907 0.9617 0.9537 0.9449 0.9449
BA 0.7548 0.8377 0.8243 0.8407 0.8407

CSCO 0.8645 0.9558 0.9439 0.9613 0.9613
GS 0.9097 0.9612 0.959 0.9601 0.9599
IBM 0.9161 0.9538 0.9488 0.9526 0.9526
INTC 0.9136 0.9359 0.9311 0.9348 0.9364
JNJ 0.7936 0.9268 0.9292 0.9278 0.9286
JPM -0.5108 0.8092 0.8144 0.8172 0.8172
KO 0.9294 0.9519 0.9511 0.952 0.951

MMM 0.8917 0.9247 0.9271 0.9213 0.9213

Average R2 Score 0.7053 0.9219 0.9183 0.9213 0.9214

Table 6. Average of MSE for Non-Rolling Forecast on Financial Data

T AIC BIC LSTM AIC BIC
(size of ARFIMA ARFIMA ARFIMA-LSTM ARFIMA-LSTM

Forecast Window) Hybrid Hybrid

3 6.266 6.041 26.110 8.293 5.698
6 20.576 20.090 47.269 18.950 20.014
9 26.725 26.023 94.411 24.609 25.033
12 35.938 34.910 106.947 34.918 35.529
15 53.768 52.588 102.767 52.087 52.928
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5.2. Environmental Pollution PM10 data

Further to the environmental pollution data in [21, sec. 6.3], we now consider
data from 01/03/2012 to 28/02/2017 from the study in [70]. We use the dataset
PRSA Data Gucheng 20130301-20170228.csv, PM10.

Table 7 gives the R2 score for rolling forecast window of T = 150 on PM10 pollution
data, and table 8 gives the mean squared error (MSE) for rolling forecast window of
T = 150 on this PM10 pollution data.

Table 7. R2 Score for Rolling Forecast Window of T = 150 on PM10 Pollution Data (Gucheng)

LSTM AIC BIC AIC BIC
ARFIMA-LSTM ARFIMA-LSTM ARFIMA ARFIMA

Hybrid Hybrid
0.718953 0.740877 0.741298 0.739319 0.739319

Table 8. MSE for Rolling Forecast on PM10 Pollution Data (Gucheng)

T AIC BIC LSTM AIC BIC
(size of ARFIMA ARFIMA ARFIMA-LSTM ARFIMA-LSTM

Forecast Window) Hybrid Hybrid

3 47.831 47.831 75.035 40.931 16.645
5 76.258 76.258 99.409 69.011 42.968
10 92.071 92.071 124.203 83.815 52.705
25 240.256 240.256 231.804 236.247 227.860
50 275.724 275.724 280.637 271.582 262.360
75 240.333 240.333 251.360 236.177 226.569
100 270.719 270.719 280.848 268.197 267.162
125 360.949 360.949 374.452 360.233 367.911
150 411.071 411.071 443.187 408.614 407.951

From tables 7 and 8, best again seems to be the ARFIMA-LSTM hybrid, especially
BIC ARFIMA-LSTM hybrid.

However, on separate static non-rolling forecasts on this data, LSTM seemed to
perform best.

5.3. Climate - El Niño Southern Oscillation (ENSO) data

Many papers have been written about climate change and climate science. One appli-
cation comparing methods including Akaike’s AIC and Schwarz’s BIC is [61]. Recalling
sec. 5.1, one application discussing both finance and climate is [22].

In our current paper here, our El Niño - Southern Oscillation (ENSO) data is from
1951 to 2023, taken from [2].

Table 9 (R2) shows LSTM worst and the other methods comparable. Table 10
(mean squared error, or MSE) again shows LSTM worst - with BIC ARFIMA-Hybrid
LSTM being generally best.
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Table 9. R2 Score for Rolling Forecast Window of T = 150 on ENSO data

AIC ARFIMA BIC ARFIMA LSTM AIC ARFIMA-LSTM BIC ARFIMA-LSTM
Hybrid Hybrid

0.5034 0.5053 0.4346 0.4894 0.4961

Table 10. MSE for Non-Rolling Forecast on ENSO data

T AIC BIC LSTM AIC BIC
(size of ARFIMA ARFIMA ARFIMA-LSTM ARFIMA-LSTM

Forecast Window) Hybrid Hybrid
3 1.0099 1.0009 2.3797 0.7129 0.5189
6 1.7758 1.9980 2.9730 1.3715 1.1139
9 2.4484 2.8266 4.0110 1.9879 1.9893
12 2.9438 3.3896 4.6210 2.4881 2.2093
15 2.4001 2.7681 3.6704 2.0269 1.8404

5.4. Energy - and electricity load data

Energy, clean energy, renewables and related areas continue to draw increasing
amounts of research and attention. One of many such works in this growing area
is [5]. Another is on smart grids and power data [67]. The energy data we consider
here is electricity load data.

Our electricity data - or electricity load data - was from [44]. We used timeseries 30
min.csv in the package and selected GB GBN load actual entsoe transparency (Total
load in Great Britain in MW as published on ENTSO-E Transparency Platform) as
the variable to do the modelling on. We used the most recent 25000 data points,
corresponding to the period from 30/4/2019 to 30/9/2020.

Table 11. R2 Score for Rolling Forecast Window of T = 150 on Electricity Load data

LSTM AIC ARFIMA-LSTM BIC ARFIMA-LSTM AIC ARFIMA BIC ARFIMA
Hybrid Hybrid

0.9713 0.9665 0.9660 0.9657 0.9657

Table 11 (R2) and table 12 (mean squared error, or MSE) show LSTM perhaps
performing best of the methods considered.

5.5. Some further possible applications

In addition to the simulations in sec. 4 and the applications in secs. 5.1, 5.2, 5.3, and
5.4, some further possible applications include data pertaining to (e.g.) adverse drug
reaction detection [9], COVID-19 and epidemiology [71], and cytology [38], etc.

As we note below in sec. 6, results here in sec. 5 (secs. 5.1, 5.2, 5.3, and 5.4) were
mixed, with the hybrid ARFIMA-LSTM - perhaps the BIC hybrid ARFIMA-LSTM
- arguably performing best.
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Table 12. MSE for Non-Rolling Forecast on Electricity Load data

T AIC BIC LSTM AIC BIC
(size of ARFIMA ARFIMA ARFIMA-LSTM ARFIMA-LSTM
Forecast Hybrid Hybrid
Window)

3 1330580 1330580 1284138 2183350 2117115
6 4947127 4947127 3986888 6137384 4970944
9 5213951 5213951 6912276 6261560 2204099
12 4629543 4629543 2624674 18873781 6485042
15 4809024 4809024 4839648 3536746 14530578

6. Discussions, conclusions and future work

We highlight that an advantage of doing more conventional simple modelling first
(e.g., [21]) is that the residuals (the differences between the true data and the modelled
values) will typically be smaller in magnitude than the original data-set - and we have
referred to this as the additive model. An alternative which we have newly presented
was the multiplicative model in sec. 4, where we also did some brief comparisons on
simulated data.

In sec. 5, the only hybrid model considered was the additive model. Results were
mixed, with the hybrid ARFIMA-LSTM - perhaps the BIC hybrid ARFIMA-LSTM
- arguably performing best.

As such, deep learning can be used to polish, refine or otherwise modify what has
already been done by more conventional modelling (such as Akaike’s AIC, Schwarz’s
BIC, minimum message length - or MML [62–64] - etc.). In the (autoregressive or)
AR model in [25] and in the ARIMA model in [21], (as well as in a separate problem
also on sequential data [23]), we used AIC, BIC and MML (as is also done in, e.g.,
[49]). With the more general ARFIMA model in this new current paper, we are using
Akaike’s AIC and Schwarz’s BIC.

We also make some observations about explainable artificial intelligence, or explain-
able AI (XAI). First, the more conventional model is relatively simple - and so already
gives us a form of XAI, as well as being amenable to sensitivity analysis. And, second,
for those who like to do XAI by taking the model arising from deep learning and
then trying to approximate it with an interpretable explainable model (such as, e.g.,
a decision tree or classification tree), this can also still be done here along similar lines
to our original earlier approach of first doing a more conventional modelling and then
doing deep learning on the residuals - here, we would simply apply such a process (of
interpretable approximation) on our deep learning model (obtained from the resid-
uals). To paraphrase, in our earlier work [21], we have done conventional statistical
modelling (as a form of XAI) and then deep learning on the (additive) residuals - and
it would be possible to extend this by applying a different XAI approach on the resid-
uals from the new deep learning models in this paper (whether being used additively
or - at least for univariate data - multiplicatively or an approach from sec. 4.1) or
quite possibly from any deep learning model. As outlined largely in sec. 1, advantages
of explainable and interpretable models include sensitivity analysis (typically) and
improvements in matters pertaining to (e.g.) understanding, trust, law, responsibility
and legal liability, safety and thwarting (potentially grave) dangers, etc.

In our paper here in sec. 4 above, we have built upon our earlier work and used
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AIC and BIC on ARFIMA and done some brief simulations with the ARFIMA-ANN-
Additive and ARFIMA-ANN-Multiplicative hybrid approaches. Future work could,
among other things, re-visit the simulations of sec. 4 more thoroughly.

Given the generality of real-word data sources, our paper and its results suggest
merit in doing such appropriate hybridisation of the ARFIMA approach with ANNs.
In terms of explainable artificial intelligence (or explainable AI, or XAI), we have an
underlying statistical model (ARFIMA) which is (transparent or) relatively easy to
interpret (or explain) and then that is enhanced by incorporating a machine learning
model (ANNs) which is oqaque (or black-box, or more difficult to interpret). As dis-
cussed elsewhere in this section (sec. 6), the work could be extended by seeking further
and better interpretable explainable approximation(s) to the relevant resultant (deep
learning) ANNs (possibly including Kolmogorov-Arnold networks, or KANs).

We now discuss future work - including passing mention of generalising beyond
additive and multiplicative (as per sec. 4.1), attempting to loosely explain the success
of deep learning, and also saying something about flat minima, generalisability and
robustness. On the issue of explaining the success of deep learning, Bayesian theory
and algorithmic information theory appear to tell us that - in some sense, MML gives
the single best inference ([64][62, chap. 2][16]) and - Solomonoff posterior-weighted
prediction [51, 52, 54] gives us the optimal predictor. Deep learning typically does
not have anything like the simplicity of AIC, BIC and MML but rather seems to do
something like making hybrid variables with its early hidden layers and inter-layer
connections and do some sort of weighted prediction with its later hidden layers and
inter-layer connections. The generation of new variables in the early layers of ANNs
is in the spirit of algorithmic information theory (AIT) [51, 52, 54, 64][62, chap. 2].
The combination of values in later layers of ANNs is in the spirit of Solomonoff’s
algorithmic probability [51, 52, 54]. With ALP denoting algorithmic probability, it
could be contended that deep learning is a way to approximate Solomonoff’s notions
of “resource limited ALP” [55] - or resource bounded probability (RBP) [56] - in time-
limited optimization problems [57][14, secs. 3.2 and 3.4]. We note that some variants
of MML - e.g., MMLD or I1D from [11, sec. 0.2.2], [12, p. 451, eqn (4)], [24], [62, secs.
4.10 and 4.12.2 and chap. 8, p. 360] and [13, sec. 6.3] - have at least the potential
to sometimes select more than one (local) optimum in the message length, and this
could be thought of as advocating a (weighted) combination of the relevant models.

On the issues of discovering flat minima [32] and the related issue of relative flatness
and generalization [47], MML would appear to have much to say about relative flat-
ness, sensitivity and generalizabilty. The Wallace and Freeman (1987) form of MML
(sometimes since called MML87) [65][64, sec. 6.1.2][23, sec. 4, eq. (10)][62, chap. 5][12,
p. 451, eqn (5)][13, sec. 6.3, expression (20)][21, equation (8)] considers the value of
a continuous Bayesian prior density over a region of volume proportional to the re-
ciprocal of the square root of the expected Fisher information as a major contributor
to the length of the first part of the MML message. If the Fisher information is small
(e.g., the amount of data, N , is small) then there will be two consequences. First,
because the Fisher information is a version of the second derivative, the peak will be
relatively flat. And, second, the first part of the message will be shorter (because of
the small Fisher information), in turn making this model a better candidate to be
the MML model. Our experience with MML models is that they tend to be relatively
simple and to generalise well (e.g., [64, sec. 9][13, 59, 62]). In short, flatness tends
to imply small Fisher information, which tends to imply better (prior) probability,
which tends to imply short length of first part of MML message, which tends to im-
ply better candidacy for being the MML model, which in turn tends to imply better
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generalisability.
The informal argument just given immediately above says something of the robust-

ness of the MML model. In combining several models (in the spirit, e.g., of Solomonoff)
rather than relying on the simple best model, predictions will typically be more ro-
bust. There is room for further discussion on robustness of models and networks in
the case when variables and/or network nodes are removed.

In addition to intended generalisations mentioned earlier in this section (sec. 6),
certain Bayesian approaches could use boosting priors ([60, sec. 3.4][11, sec. 0.2.6][13,
sec. 6.9]) and horseshoe priors [8] for cases of sparsity and shrinkage. Or, additionally
and alternatively, such approaches could use Bayesian priors of different motivation
[13, sec. 7.1][14, sec. 4.3]. Further generalisations intended for future work include one
or more of (e.g.) further multidimensional multivariate models, SARMA, βSARMA
[34], the approaches from [46], images, spatio-temporal (image) models, etc. and ad-
dressing at least some of these with MML.
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